IP ROUTING

Metcalf's Law

How much is a network worth?

- Approximation: 1 unit for each person a person can communicate with
 - The more people I can talk to, the more I value the network.
- N people in the network ⇒
 network is worth N²"units"
 Network value scales as N², (not N) is called Metcalf's law

Implications for Peering

- Simple model of network value implies peering should often happen
- What is the increase in value to each party's network if they peer?
 - Want to compute change in value, ΔV
 - Take larger network value and subtract old

• $\Delta V_1 = N_1 (N_1 + N_2) - (N_1)^2 = N_1 N_2$ • $\Delta V_2 = N_2 (N_1 + N_2) - (N_2)^2 = N_1 N_2$

Symmetric increase in value

- Simple model shows net increase in value for both parties
- Both network's values increase is equal!
 Smaller network: a few people get a lot of value
 Larger network: a lot get a small value.
 Helps explain "symmetric" nature of most peering relationships, even between networks of different sizes

Takeovers

- Instead of peering, what if the larger network acquires the smaller one?
 - suppose it pays the value for the network too
- $\Box \quad \Delta V = (N_1 + N_2)^2 (N_1)^2 (N_2)^2 = 2(N_1 N_2)$
 - Captures twice as much value by acquisition as peering
- An incentive to not peer
 - E.g. to force a sale or merger, allowing larger network to capture a greater value than by peering

Reasons not to Peer

Asymmetric Traffic

- More traffic goes one way than the other
- Peer who carries more traffic feels cheated
- Hassle
- Top tier (big) ISPs have no interest in helping lower tier ISPs compete
 - The "Big Boys" all peer with each other at no/little cost
- Harder to deal with problems without strong financial incentive

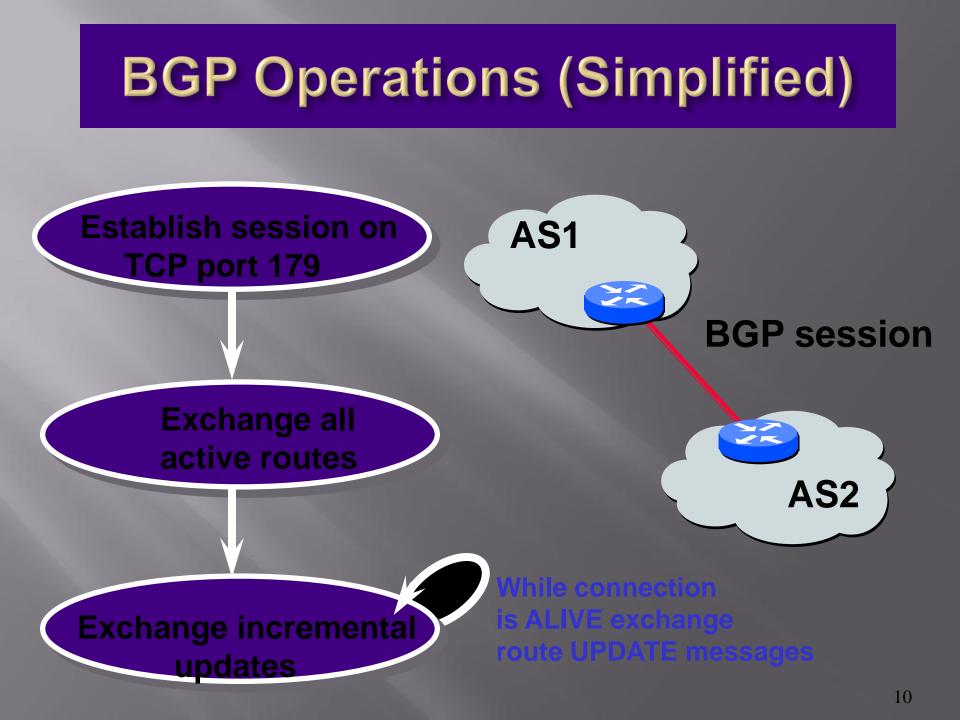
A lower tier strategy

- Buy transit from big provider
- Peer at public exchange points to reduce transit cost
- Establish private point-to-point peering with key ISPs
- When you're big enough, negotiate peering with transit provider

BGP and **Traffic**

Network engineering

 Estimate traffic matrix
 Tune network for performance


 Stability assumptions for estimation, tuning
 Reality:

- Inter-domain connectivity grown rapidly
- Large # of BGP entries, changes
- Can result in unstable Traffic Matrix
- Can be bad for performance

Important BGP attributes

LocalPREF

- Local preference policy to choose "most" preferred route
- Multi-exit Discriminator
 - Which peering point to choose?
- Import Rules
 - What route advertisements do I accept?
- Export Rules
 - Which routes do I forward to whom?

Four Types of BGP Messages

- **Open** : Establish a peering session.
- **Keep Alive** : Handshake at regular intervals.
- **Notification** : Shuts down a peering session.
- Update : <u>Announcing</u> new routes or <u>withdrawing</u> previously announced routes.

announcement = prefix + <u>attributes values</u>